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TRANSIENT HEAT FLOW BETWEEN CONTACTING SOLIDS 
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Abstract-Approximate solutions valid for different time domains are found for the problem of 
transient heat flow between contacting solids. The parameters governing the heat flow and the 

applicability of the different solutions are given in terms of the contact geometry. 
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NOMENCLATURE 

area, cmz; 
area per contact spot, cm2; 
contact spot radius, cm; 
characteristic dimension, cm; 
characteristic dimension, cm; 
thermal conductance, Cal/cm2 degC s; 
thermal conductivity, Cal/cm degC s; 
contact spot density, cm-2; 
heat flux, Cal/cm2 s ; 
heat flux per contact spot, Cal/cm2 s; 
thermal resistance, degC cm2 s/Cal; 
Laplace transform variable, s-l; 
temperature, “C; 
dimensional constant, cm-l; 
dimensional constant, cm-l; 
temperature, “C. 

Greek symbols 
a, thermal diffusivity, cm2/s; 
169 defined by equation (7), ~-1’~; 
Y? dimensionless constant ; 
6, contact spot spacing, cm; 
P, thermal resistance per contact spot, 

degC s/Cal; 
‘0, defined by equation (49, cm. 

INTRODUCTION 

THE problem of steady-state conduction across 
the interface between two solids in mechanical 
contact has been examined in increasing detail 
[I, 2, 31. Less attention has been paid to the 
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transient case which occurs in frictional heating, 
in the molding or shaping of materials whose 
temperatures differ from that of the tool and in 
the heating or cooling of laminated bodies. 
The results presented here were developed 
during a study of heat transfer in glass forming, 
wherein heat is extracted from the glass by a 
colder mold in order to increase the viscosity 
of the glass to the point where it is essentially 
rigid. 

It has been well established that the surfaces 
of solid bodies which are pressed together 
actually touch only at isolated spots and that 
the true contact area is a small fraction of the 
total area [4]. Thus, the heat (or electrical) flow 
between such bodies is in part confined to the 
spots, resulting in converging and diverging 
flow at each spot. Heat and usually to a much 
lesser extent, electricity, can also flow across the 
gap which exists between the contact spots 
provided the material in the gap is a conductor 
or the temperature level is great enough for 
radiation to play an important role. The con- 
vergence at the spots results in an effective 
contact resistance per spot, p, for steady state 
flow given by [4, 5, 61: 

1 1 - -. 
’ =4aKl + 4a KZ 

where p is defined by 

q’ rraz = F. 

a is the radius of the spot and the K’s are the 
conductivities of the two materials. If the density 
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of spots is N, the overall resistance, R, per 
unit area, is 

1 Kl + K2 
R=------- 

4aN Kl K2 ’ (3) 

In heat-transfer work this is usually replaced by 
its inverse the surface conductance, H: 

H=L =4aNKlKz 
R KI + K2 * (34 

The quantity 2K1 Kz/(KI + Kz) is the har- 
monic mean of the thermal conductivities. 
In order to determine the transient flow of heat 
between two bodies, the case of an isolated 
contact spot is first examined, followed 
case of many spots. 

TRANSIENT FLOW THROUGH A 
SINGLECONTACT SPOT 

by the 

Figure 1 shows the cross section of a contact 
spot of radius a between two bodies with 
different properties, denoted by the subscripts 
1 and 2, and different initial temperatures, 
TI and Tz. The two bodies are taken to be semi- 
infin’te in extent. 

The small volume of material inside the 
spherical surface of radius a is assumed to be a 
perfect conductor and the heat flow outside of 
the sphere is assumed to be radial only, which is 
certainly true at some distance from the spot. 

FIG. 1. 

The temperature distribution T (r, t), is then 
the solution of 

r>n (4) 

with the boundary conditions 

Vl = v2 

K afi__K s 
’ ar 3 8, 

VI = TI 
V2 r= T2 t = * 

Using the Laplace transform method [6, 71, it is found that the transforms are 

VI (r, 8) = Tds + (T2 - TI) 
K2 ~5~‘~ Kds> + a2lal exp [-- (r - a) d(s/al)] 

(KI + K2) 

I 

(6) 

(K2 ~~~~~ + Kl cP2) s (da> + a cKI a11,2 + K2 a_1,2j 
2 

and a similar equation for V2 (r, s) found by interchanging subscripts. Letting 

B = (K~ a;l~~~o,‘i2) a (7) 

from a table of transforms the inverse of (6) is 
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At t > l/P, the contact temperature, V(u, t) 
at r = a approaches the steady-state value 

V(a, a> - Tl K2 

Tz - Tl = KI + Kz’ (9) 

This result can be found directly from the 
transform without inverting by multiplying the 
transform by s and letting s approach zero. If 
the two bodies have the same thermal properties, 
the steady-state contact temperature, which 
is the mean of the initial temperatures, is 
reached instantaneously since the terms with 
exponentials drop out. The transform of the 
heat flux through the spot is 

4’ (a, s) = 

(10) 

which reaches a steady-state value of 

q'(u, ~0) = (T2 - TI) 
&K2 

a& + K2) 
(11) 

The resistance is then 

T2 - TI Kl -I- K2 
R=_=_.._.--_ 

m2q rra KI KZ (12) 

agreeing with (3) quoted above except for the 
factor r/4, which results from treating the 
constriction as a spherical rather than a circular 
surface. The inverse of (10) is: 

Q’ (a, t) = (Tz - Tl) 
Kl K2 a~112 a;112 

Kl ct;1’2 + Kz a;112 

(13) 

(1-g)exp(gZt)efcgdr]. 

If the two materials have the same properties, 
(13) becomes 

q’ (a, 0 = (Tl - Tz) 1 * U3a) 

The term in (13) containing the exponential 
can be neglected if the thermal dilfusivities do 
not differ greatly. The remaining time-dependent 
term becomes negligible when 

t > a2/?ra. 

With a contact spot diameter of 0.01 cm [4] and 
typical metal properties; 

a2/na -N 5 X 10e4 s. 

The sphere of the same radius which has been 
assumed to be a perfect conductor also has a 
response time of this order [S] so that the overall 
response time is of the same order. 

The initial heat flux is thus infinite. The first 
term in (13) is the solution of problem of two 
semi-infinite solids with perfect contact so that 
the remaining terms are due to the convergence 
at the spot. For the bodies as a whole, im- 
mediately after contact, the heat flux is given by 

Kl K2 a1112 a;112 na2 N 
4 = (fi - T2) (Kl .~1/2 + K2 a,1/2) 

[ 

da1 4 
d(L)+ u2/3 I * (14) 

The conclusion is that for t < (U4$/al ap7), 
the bulk average temperatures at a distance 
perpendicular to the plane of contact respond as 
if the initial temperature difference were reduced 
by the factor ru2N, i.e. the fractional surface 
contact area, and no contact resistance exists. 

In real bodies the steady-state solution (11) 
will not be reached, since after some time the 
temperature fields due to neighboring contact 
spots overlap. This effect is investigated next. 

RESPONSE OF AN ARRAY OF CONTACT SPOTS 

Assuming a uniform density, N, of contact 
spots and a uniform contact spot area A, for 
semi-infinite bodies, the flux through a contact 
spot is (NAo)-l times higher than the flux 
calculated over the total surface area, if all of the 
heat flows through the spots. A single spot may 
then be treated by including with it a semi- 
inlinite rod of cross-sectional area N-l. The 
problem is idealized as follows : 



150 J. H. HEASLEY 

i// l 
i 

‘\I \ 

FIG. 2. 

The response is to be found for a semi- 
infinite rod of the shape shown in Fig. 2, which 
is at a uniform temperature of zero initially and 
is then heated to a temperature TO at the surface 
z = d. The cross-sectional area, A, increases 
from d to b, in such a way that: 

A = (yz>2 (15) 

where y is a constant to be evaluated below and, 

d2/b2 = (N&J. (16) 

This model does not necessarily assume that the 
surface profile is given by the above expression, 
but only that the heat flows through a path 
which can be approximated in this way. 

The temperature distribution is found from: 

GY 2 av 1 av 

GT 1 aT 1 
(17) 

-_=--. 
822 a az ’ 

b<z 
J 

and the boundary conditions 

T=V=O; t=O,d<: 

V=To; t > 0, 2 = d 

V = T; t>O,z=b 

2V 3T 
2% =z; t > 0, z = b 

Once the response to this step increase in tem- 
perature at z = a is found, formulations for 
other boundary conditions may easily be 
established since the system is linear. The 
transformed equations are : 

ld”(zVs) s 
- --------Vs=O; d<z.:b (19) z dze a 

cl” Ts 
--!Ts=O; b 

dz2 Q 
< 2. (20) 

A solution of (19) which satisfies (18) is : 

V, = zcosh 

+ 5 sinh 

And a solution of (20) which goes to zero at 
infinity is 

.-Bexpj~-Ji~i(~---,,)]. (22) 

Using the other boundary conditions to evaluate A and B gives 

(23) 
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The transform of the heat flux at z = d is: 

d(&s) = - Kz 
I 

- 1 - exp [- 2 J(i) @ - 41 

- 1+ exp [- 2 h/(i) V-d)] 

. (25) 

For short values of time, the inverse of the above or since the geometry can be taken to be similar 
equation is found to be approximately in each body 

- . VW 

which agrees with (13a) since TO in this case is The average spacing, 8, between contact spots is 

one half the initial temperature difference 
between two like materials. 6 = -& = yb (31) 

For long values of time a solution is found by 
expanding the denominator of (23) in powers of 
S. If only two terms are kept, the result is : 

where y is a constant on the order of one. Then 
using 

This result is exactly analogous to the solution 
of the problem of heating a semi-infinite body 
through a surface coefficient, H, which has 
for a transformed solution 

To Hexp [- J(i) zc] 

Ts=;K[J(,!)+~ ’ (28) 

Therefore at sufficiently long times, 

I > b2 (b - d)2 
d2a ’ 

d = bd(NAo) = y 

it is found that 

or 

R = (1 - 2/WAo) (Kl + K2) 

y di”J v’(NAo) - Kl K2 
(32) 

Y 2/N d(NAo) Kl K2 

H = [l - d(NAo)](K2 + Kl) (32a) 

if 
1/(NAo) < 1 

that is, if only a small fraction of the surfaces 
actually touch, then 

R= 
K2 + KI 

N(dAo) KI K2y 
(32b) 

the constriction resistance behaves as a surface or per spot 
resistance equal to 

K2 + Kl 

R _;=b(bd; 4. 
(33) 

(29) 
’ = &YZ) Kl Kzy 

where a is the radius of the contact spot. This 
For contact of two bodies the total resistance result agrees in form and magnitude with that 

is the sum of the individual resistance, so that derived above for a single spot in an infinite 

R = bl (bl - 4) 
4 Kl 

+ b2 (b2 - d2) 
contact plane and shows that if the spots are 

d2 K2 (30) 
small and far apart, the resistance they offer 
to heat flow is not appreciably affected by the 
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overlap of adjacent temperature fields because The additional term accounts for the heat 
the major part of the resistance lies very close capacity of the restrictions. Or 
to each spot. The value of the constant y is thus 
about two. 

If another term is kept in the denominator of 
equation (23), 

T 
S 

Ts = where 

T”b(b-d) d -P[-&p-b)] 
[J() f+ b (bd_ d) + i t2b + d6b(b - “] 

.(34) 

Rearranging gives 

Ts= 
Tohexp [-J(i)@-@] 

In the limit as h:! + co, the above equation approaches (27). Letting 

u = hz + hz 
J(l -2) 

L’ = h.’ - 11~ 
J(l-k) 

I 

J 

results in 

2To hl hz 
Ts =- 

s (24 - v) 

which has the inverse 

7’2 -= 
T, 

1 (z - b) 1 (z - b) 

; erfc 22/(at) - i 
exp [atG + v(z - b)] erfc v 2/(af) +---- 

22/(at) 1 
1 -_ erfc (z - b) 1 22/(~t) + ;exp [atG + u(z - b)] erfc u\/(at) + $$$i . 
24. 

(34b) 

(36) 

(34c) 

(37) 
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This approximate solution to (17) holds for t > l/u 2~. Using the same approximations for u and 
b, it is found that 

3rv’N 
h2 = 2 - d(NAo) - NAo (38) 

2hl -= 
h2 

W(NAo? + 2NAo 
3 3 * (39 

For NAo < 1, i.e. a small fractional density of surface contact, which is the case for metal to metal 
joints, h2 9 hl, and 

u N 2h2 

v 21 hl I- (40) 

T2 2h2 erfc(= - 8 
exp [hl (z - b) + ath:l erfc 

(z - 4 

T7, = 2hz - hl 
__-- 2dcatj + hl d/(4 

> 
- 

2 d(at) 

hl rerfc (z - b) 
2hr-11 

~- 
2 I44 

exp [2h (z - b) + 4athi] erfc o + 2hz d(ut) 22/(ut) . (40 

From this equation it is seen that the time 
constants 

1 I 
tl=h2 and 

la 
te =4* (42) 

govern the response and that for times on the 
order of tl, the terms which include hz are in- 
significant provided NAo < 1. 

APPLICATIONS 

It is shown above that the contact spots act as 
both heat-flow resistances and capacitances 
and that under certain conditions the capacitance 
can be neglected. If the capacitance is negligible 
the normal convection boundary condition is 
used for each body at the contacting surface, as 

a7-r L3T2 
Krax =&==H(Tl - 7'2) (43) 

where H includes both the constriction resistance 
and any other surface barrier present, such as 
scale or a gas gap. Care must be taken to insure 
that these resistances are added in the proper 
way (i.e. in series or in parallel). 

If solutions are desired for short values of 
time, the capacitance is not negligible, and each 
boundary condition takes the form 

aTl H 
,,-g(T~-T~)-z 2 =0 (44) 

where 

2 - 1/(NAo) - NAo 
W= 

6Yxw) 
(45) 

and accounts for the heat capacity of the 
restrictions. 

If the heat flux at the surface is given and the 
capacitance is negligible, then the problem can 
be treated in the ordinary way and a term 
added to account for the temperature gradient 
through the restrictions to find the maximum or 
minimum surface temperature. If the capacitance 
is not negligible, two equations must be solved 
for each body, a partial differential equation for 
the body and an ordinary one for the restrictions. 
Thus, 

ST 1 %T -=- -. 
ax2 a at’ 

N>O (46) 

I+-; = H(T- V); X=0 (47) 

K; g= H(T- V)t_f(t) ; x=0 (48) 

where f(t) is the prescribed heat input from 
friction or some other source. The value of V is 
then the peak surface temperature. The average 
surface temperature lies between V (t) and 
T (0, 0. 
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R&sum&On trouve des solutions approch&es dans diffkrents domaines temporels pour le problCme 
des flux de chaleur transitoire entre des solides en contact. Les param&res gouvernant le flux de 
chaleur et l’applicabilit8 des diffkrentes solutions sont don&es en relation avec la gComCtrie du 

contact. 

Zusammenfassung-Fiir das Problem des instationken WIrmeflusses in sich beriihrenden Festkiirpern 
wurden N&herungsgleichungen fiir verschiedene Zeitabschnitte angegeben. Die, fiir den WIrmefluss 
und die Anwendbarkeit der verschiedenen LGsungen massgebenden Parameter sind, abhlngig von 

der Art Ihrer Beziehung, wiedergegeben. 

AmroTaqusr--j@ 3a;~asu onpezenemis TenJIoBoro noToKa nrelr<ay conpuHacaIomuws4cri 
TBePJ(bIMII TCJIaMll H~ii~eHbI IIphIWfWIHIJIe PBIIIE?HLIFl, cnpane~nm3bIe snllr pa3nn9nbIx 
Bpf3M6!HIIbIX IiHTepBa:IOB. rkLpaMl?TphI, OIIm~IBaIOIIJI~e TeIIJIOBOli IIOTOIi, I4 IIpHMeHHMOCTb 

pasnnumrx perrreuml ;Kaubr B 3amicLf>focTn OT reo~~eTpnrr conpuFtacaroumxcn nnnepxnocrefi. 


